elementary math refresher

- (Mathematical) functions of one variable
- The graph of a function
- Adding or multiplying by a constant: how does the graph change?
- Straight lines, exponentials, logarithms,...
- First derivative of a function of one variable
- Definite and indefinite integrals (of a function of one variable)

The Derivative of a function

The Derivative of a function

The Derivative of a function

Derivatives of elementary functions

$$
\begin{aligned}
& \frac{d}{d x} a=0 \\
& \frac{d}{d x} x=1 \quad \frac{d}{d x} x^{n}=n x^{n-1} \\
& \frac{d}{d x} \ln (x)=\frac{1}{x} \\
& \frac{d}{d x} e^{x}=e^{x} \\
& \frac{d}{d x} \sin (x)=\cos (x) \quad \frac{d}{d x} \cos (x)=-\sin (x)
\end{aligned}
$$

$$
\frac{d}{d x}[a f(x)]=a \frac{d}{d x} f(x) \quad \text { multiplication by a constant }
$$

$$
\frac{d}{d x}[a f(x)+b g(x)]=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x) \quad \text { linear combination }
$$

$$
\frac{d}{d x}[f(x) g(x)]=g(x) \frac{d}{d x} f(x)+f(x) \frac{d}{d x} g(x) \quad \text { product }
$$

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x} f(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}
$$

$$
\begin{aligned}
& \frac{d}{d x}[f(g(x))]=\frac{d}{d u} f(u) \frac{d}{d x} g(x) \quad \text { composition (chain-rule) } \\
& \quad u=g(x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}[3 \sin (x)]=3 \cos (x) \\
& \frac{d}{d x}\left[\sin (x)-e^{x}\right]=\cos (x)-e^{x} \\
& \frac{d}{d x}\left[x^{4} \ln (x)\right]=4 x^{3} \ln (x)+\frac{x^{4}}{x} \\
& \frac{d}{d x}\left[\frac{1}{x}\right]=-\frac{1}{x^{2}} \\
& \frac{d}{d x}\left[e^{-x / a}\right]=-\frac{e^{-x / a}}{a}
\end{aligned}
$$

multiplication by a constant
linear combination product
ratio
composition (chain-rule)

Indefinite Integrals

(inverse operation of the derivatives)

$$
g(t) \rightarrow \frac{d}{d t} g(t)
$$

$$
\begin{gathered}
\int f(x) d x=F(x)+\text { constant } \\
\frac{d}{d x}(F(x)+\text { constant })=f(x)
\end{gathered}
$$

Integrals of elementary functions

$$
\begin{aligned}
& \int a d x=a x+\text { constant } \\
& \int x d x=\frac{1}{2} x^{2}+\text { constant } \quad \int x^{n} d x=\frac{1}{n+1} x^{n+1}+\text { constant } \\
& \int \frac{1}{x} d x=\ln (x)+\text { constant } \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+\text { constant } \quad \int \cos (x) d x=\sin (x)+\text { constant } \\
& \int \sin (x) d x=-\cos (x)+\text { constant }
\end{aligned}
$$

Definite Integrals

(fundamental theorem of integral calculus)

$$
\begin{aligned}
& A=f(a) \Delta x+\ldots \\
& \quad+f\left(x_{k}\right) \Delta x+f\left(x_{k+1}\right) \Delta x+ \\
& +f\left(x_{k+2}\right) \Delta x+f\left(x_{k+3}\right) \Delta x+\ldots \\
& \quad \ldots+f(b) \Delta x
\end{aligned}
$$

$$
A=\sum_{k=1}^{N} f\left(x_{k}\right) \Delta x
$$

$$
\begin{gathered}
A=\sum_{k=0}^{N} f\left(x_{k}\right) \Delta x \rightarrow \int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x=F(b)-F(a) \\
\int_{a}^{b} \frac{d}{d x} F(x) d x=F(b)-F(a) \\
\int_{d} f(x) d x=F(x)+\text { constant } \\
\frac{d}{d x}(F(x)+\text { constant })=f(x)
\end{gathered}
$$

$$
f(x)
$$

- https://www.khanacademy.org/math/algebra-home/alg-functions
- https://www.mathsisfun.com/calculus/introduction.html
- http://www-math.mit.edu/~djk/calculus_beginners/
- https://www.khanacademy.org/math/calculus-home

